# Fiche mémo biostatistique / épidémiologie clinique

# 1. Notation pour la fiche mémo

- « Exposition » = toute caractéristique individuelle, intrinsèque ou extrinsèque
- « M » = « maladie » = état de santé d'un individu dont on cherche à identifier les expositions qui lui sont (causalement) associées
- « E » = exposition d'intérêt = exposition dont on cherche à quantifier l'association (causale) avec M
- « OR\*<sub>E→M</sub> » = Odds Ratio ou Risque Relatif (*Risk Ratio* ou *Hazard Ratio*) quantifiant l'association statistique entre E et M
- « Ecart systématique » = écart qui se reproduirait toujours, avec le même ordre de grandeur, si on devait refaire une infinité de fois l'étude

## 2. Inférer statistiquement et causalement

- Inférer statistiquement = généraliser l'association statistique entre E et M estimée (dans l'échantillon) à l'association statistique entre E et M dans la population cible
- Inférer causalement = généraliser l'association statistique entre E et M estimée à l'association causale entre E et M dans la population cible

## 3. Intervalle de confiance à 95% d'une estimation d'un OR\*

- OR\* [OR\*inf; OR\*sup]<sub>95%</sub>: la vraie valeur de l'OR\* correspondant dans la population cible a 95% de chances de se trouver entre OR\*inf et OR\*sup
- Plus l'intervalle de confiance est resserré autour de l'OR\* estimé, plus l'OR\* est estimé avec précision
- « 1 » n'est pas compris dans l'intervalle de confiance à  $95\% \rightarrow l'OR^*$  estimé est significativement différent de « 1 » → association statistique significative entre E et M

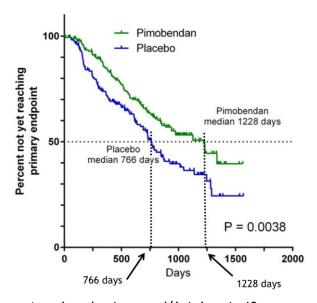
# 4. Risques d'erreurs de 1<sup>ère</sup> espèce (α) et 2<sup>ème</sup> espèce (β)

- Association significative  $\rightarrow$  erreur de 1<sup>ère</sup> espèce = 5% ( $\alpha$ ) considérée comme faible  $\rightarrow$  on peut être *a priori* convaincu en inférant
- Association non significative  $\rightarrow$  erreur de  $2^{\text{ème}}$  espèce  $\beta$ , inconnue  $\rightarrow$  on ne peut *surtout* pas être convaincu en inférant  $\rightarrow$  il est recommandé de ne pas inférer

### 5. Puissance d'une étude

- Une étude a manqué de puissance statistique si elle n'a pas été capable de montrer statistiquement ( $\Leftrightarrow$  association non significative) une association que l'on pense réelle
- 2 origines d'un manque de puissance statistique
  - o Taille d'échantillon insuffisante
  - o Association réelle entre E et M qui existe, mais elle est faible

# 6. Analyse de survie


### 6.1. Contexte

Etude clinique recrutant des individus indemnes de M, suivis au cours du temps, et dont la date de survenue de M est collectée

### 6.2. Définitions

- Evénement (event, endpoint) = critère de jugement dont la survenue est étudiée
- Censure (censor) = non observation de l'événement jusqu'à la fin du suivi
- J0 = date à partir de laquelle les individus commencent à être suivis
- Temps de survie (survival time) = délai (en jours, mois, années) entre J0 et, soit la date de l'événement, soit la date de la censure

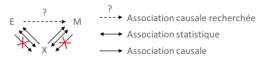
# 6.3. Interprétation des courbes de Kaplan-Meier (figure issue de Boswood, 2016)



- Axe des abscisses = délai depuis J0
- Axe des ordonnées = % estimé dans l'échantillon d'individus n'ayant pas encore présenté l'événement
- 1 saut de marche = survenue d'au moins 1 événement à ce délai-là depuis J0
- 1 petit tiret vertical sur une courbe = survenue d'au moins une censure à ce délai-là depuis J0 (tirets non obligatoirement représentés - c'est éditeur-dépendant)
- 766 jours = temps de survie médian dans le groupe placebo = en estimation, 50% des individus sous placebo n'ont pas encore présenté l'événement 766 jours après J0 = 50% des individus sous placebo ont déjà présenté l'événement 766 jours après J0
- « P = 0.0038 » = degré de signification du test du log-rank testant si les courbes de survie sont ou non significativement différentes
- Plus la pente d'une courbe de survie est marquée, plus l'événement survient rapidement après J0

# 7. Biais d'association dans l'estimation d'un OR\*<sub>E→M</sub>

### 7.1. Définition


Biais d'association = écart systématique entre l' $OR^*_{E \to M}$  estimé et l' $OR^*_{E \to M}$  dans la population cible

### 7.2. Biais de classement

- Origine : erreurs de classement (même aléatoires) sur E ou sur M
- Biais de classement non différentiel
  - o Les erreurs sur E ne dépendent pas de M et les erreurs sur M ne dépendent pas de E
  - Diminue la force de l'association → peut rendre non significative une association qui l'aurait été sans les erreurs de classement
- Biais de classement différentiel
  - o Les erreurs sur E dépendent de M ou les erreurs sur M dépendent de E
  - o Augmente la force de l'association → peut rendre significative une association qui ne l'aurait pas été sans les erreurs de classement
  - o Etude clinique en double aveugle (double blinded study): élimination du biais de classement différentiel

## 7.3. Biais de confusion et facteur de confusion

- Définition : écart systématique entre l' $OR^*_{E\to M}$  estimé et l' $OR^*_{E\to M}$  causal dans la population cible
- Origine : non comparabilité clinique entre les individus E+ et les individus E- sur des expositions cliniquement associées à M
- Facteur de confusion : exposition X qui répond aux deux critères ci-dessous
  - o Critère n°1: X cliniquement associée à E sans en être une conséquence
  - o Critère n°2 : X cliniquement associée à M sans en être une conséquence



- Comment limiter les biais de confusion dus à des facteurs de confusion ?
  - o (Protocole) Attribution aléatoire (randomisation) de E
  - o (Protocole) Appariement sur ces expositions (to match)
  - o (Analyses stat') Ajustement sur ces expositions à l'aide de modèles multivariés

# 8. Suggérer que E semble un facteur de risque / protecteur de M dans la population

E doit respecter la règle des 3A:

- Exposition à E antérieure à la survenue de M (critère d'Antériorité)
- Association entre E et M significative (p < 0,05)
- Absence de biais de classement différentiel et absence de biais de confusion

## 9. Modèles multivariés (multivariate models)

- Le choix d'un modèle (multivarié) dépend du type de M
  - o Si M est quantitative → régression linéaire
  - Si M est binaire sans délai de survenue de M → régression logistique
  - Si M est binaire avec délai de survenue de M → modèle de Cox
- Permettent d'ajuster l'association entre E et M sur ≥ 1 facteur de confusion en même temps  $\rightarrow$  **\(\)** des biais de confusion  $\rightarrow$  inférence causale possible

#### 10. Les principales études cliniques

### 10.1. Essai clinique (controlled trial)

- Recrutement d'individus tous indemnes de M
- Attribution (aléatoire, ou non aléatoire) de E au moment de recruter les individus
- Suivi des individus dans le temps → recueil de la date de survenue de M
- Antériorité de E vis-à-vis de M garantie
- En général, analyses de survie à utiliser (courbes de Kaplan-Meier, modèle de Cox)

#### 10.2. Etude observationnelle de cohorte (cohort study)

- Recrutement d'individus tous indemnes de M, déjà E+ ou E- à l'inclusion
- Suivi des individus dans le temps → recueil de la date de survenue de M
- Antériorité de E vis-à-vis de M garantie
- En général, analyses de survie à utiliser (courbes de Kaplan-Meier, modèle de Cox)

#### 10.3. Etude observationnelle cas-témoins (case-control study)

- Recrutement des « cas » d'un côté et des « témoins » de l'autre
- Souvent, 50% de cas et 50% de témoins (mais ce n'est pas une obligation)
- Antériorité de E vis-à-vis de M difficile à garantir
- Régression logistique ou linéaire à utiliser

#### 10.4. Etude observationnelle transversale (cross-sectional study)

- Recrutement des individus plus ou moins « au hasard » dans la population source
- Antériorité de E vis-à-vis de M difficile à garantir
- Régression logistique ou linéaire à utiliser

#### 11. Etudes randomisées versus études observationnelles

- Avantages / inconvénients des études randomisées (E attribuée aléatoirement)
  - o (+) Exposition E contrôlée (quantité, durée, observance, ...)
  - (+) Biais de confusion minimes (⇔ excellente comparabilité clinique a priori)
  - o (+) Inférence causale « facile »
  - o (-) Aspects éthique et de faisabilité pouvant rendre impossible la randomisation
- Avantages / inconvénients des études observationnelles
  - o (+) Représente la « vraie vie »
  - o (+) Pas de problème d'éthique ou de faisabilité
  - o (-) Biais de confusion persistant (oubli de prendre en compte des facteurs de confusion) → inférence causale difficile ou à faire avec des pincettes
- Essais cliniques non randomisés : inférence causale aussi difficile à faire que dans les études observationnelles